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Abstract—Fitting a parametric curve to unordered point cloud
data is a frequently encountered problem in areas, where raster
data has to be vectorized, or advanced geometric descriptors of
point clouds are to be found. Existing approaches often struggle
with certain geometric properties, such as varying density, self-
intersections, sharp corners, or are only designed to handle low-
dimensional and discrete data. With the purpose to overcome
these difficulties, the applicability of evolutionary algorithms to
the topic of curve approximation is studied in this work. Based
on the popular algorithm NSGA-II, an implementation has been
developed that uses the distance to the point cloud and the
number of control points of a curve as objective functions. The
evaluation reveals that the proposed objective functions control
the evolutionary process well, and the final curves fit most of the
evaluated data sets correctly. The results of the study indicate
the usefulness of genetic algorithms for the topic of curve fitting
and form a basis for future research in this area.

I. INTRODUCTION

Unordered point sets are frequently encountered in the
field of computer-aided geometric design (CAGD) and image
processing. Scanning devices, such as cameras or 3D-scanners,
take images of objects and scenes and store them in a
rectangular grid of pixels or voxels, known as raster data.
This discrete structure represents the given input in a human-
perceptible way, but often cannot directly be applied to
advanced algorithms in computer-aided design. Instead, many
of these applications require vector data such as lines, curves, or
surfaces. In reverse engineering, geometric models of existing
objects are created in order to review designs, reproduce objects,
or project them into new scenarios. Here, converting raster
images into vector data becomes more and more important.
Of particular interest in CAGD are B-spline curves, as their
piecewise polynomial structure makes them flexible and quick
to compute. Additionally, their mathematical definition can be
easily extended to surfaces and hyperplanes.

In data mining, large databases with high-dimensional data
are often represented as point clouds, where each record in a
database refers to one element in the cloud. A common task
is to segment the data set into several clusters, based only
on the intrinsic properties, i.e. without having any additional
information like class assignments. Model-based clustering
techniques such as k-means or fuzzy c-means group the data
based on the distance to the geometric center of a cluster - the
centroid [1]. These clustering algorithms tend to form (hyper-)
spherical clusters and therefore struggle with non-convex data.

To apply model-based clustering algorithms to non-convex data,
one may use a different kind of centroid than a simple point [2].
For clusters whose shape is aligned towards a main direction,
curves can be used as more appropriate representatives of the
centroid structure.

Genetic algorithms have been successfully used in the area
of curve fitting for the determination of optimal number and
location of knots (e.g. [3]); however, these approaches require
the order of the data to be given, for example in an interpolation
task. Other strategies that do not assume such an ordering
are restricted to discrete and low-dimensional data, or cannot
fit point clouds of certain geometric properties. To find a
solution for these constraints, in this work the applicability of
evolutionary algorithms for curve approximation is studied. An
exemplary implementation based on the popular multiobjective
evolutionary algorithm NSGA-II is presented and compared to
an approach based on the local tangential flow of a data segment.
In particular, the following requirements have been specified:
first, the approach should be able to process continuous data
and data sets of high dimensions. Second, the algorithm should
not be restricted to geometric characteristics such as local
continuity or a uniform noise variance. Instead, it should be
able to handle self-intersections, non-continuous segments (i.e.
sharp corners), and point clouds with varying density.

B-Spline Curve Fitting

Given a set of data points, the aim of B-spline curve fitting
is to find a B-spline curve C(t) =

∑n
i=0Ni,k(t)Pi that approx-

imates the shape of the data best, and therefore minimizes the
distance to the point cloud. Here, P = (P0, P1, . . . , Pn) is the
set of control points; Nk(t) = (N0,k(t), N1,k(t), . . . , Nn,k(t))
is the set of B-spline basis functions defined over a de-
gree k − 1 and a non-decreasing sequence of real numbers
T = (t0, t1, . . . , tn+k), the knot vector. Two useful properties
of B-spline curves may be mentioned in the following: first, a
curve is said to be clamped uniform, if the first and last knot in
the knot vector each has multiplicity k, and the remaining knots
are evenly spaced. Such a curve starts at the first control point
and ends at the last control point. Second, due to the definition
of the basis functions, a control point Pi only influences the
curve in the interval [ti, ti+k) (local control property).

In this work, the subtopic of curve approximation (also
known as curve extraction / reconstruction) is addressed, which



assumes the data to be noisy or at least non-interpolable.
The remaining article is structured as follows: In Section

II, an overview on existing work for the problem of curve
approximation is given. Motivated by the drawbacks of existing
work, Section III introduces the implemented genetic algorithm
and the used objective functions. Section IV presents the results
of the evaluation and discusses the potential for future work.
Section V finalizes the article by summarizing the key findings.

II. RELATED WORK

The problem of curve approximation is widely acknowledged
in the literature. While a thorough review of published studies
would go beyond the scope of this work, a short overview is
given in the following.

If the order of the data points are already known (e.g.
because it represents a function or time series), the curve
can be obtained by a regression such as least squares [4]. A
good data parametrization is critical to the performance of
the fitting process [5]. Recently, computational intelligence
techniques such as artificial immune systems [6], [7] or genetic
algorithms [3], [8]–[10] became popular for this problem.

Many applications however can not provide an ordering on
the point cloud. To approximate such a data set by a curve, one
can either determine an order and apply one of the optimization
approaches listed above, or use a fitting algorithm that does
not require an ordering.

Some methods construct a one-dimensional (thinned) rep-
resentation - a skeleton - of the data first. Levin [11] uses
the moving least-squares method to thin a point cloud. The
extracted skeleton can then be used to interpolate a smooth
curve. Lee [12] studies the influence of the neighborhood size to
the thinning process in moving least squares, suggests optimal
neighborhood sizes, and applies the algorithm to pipe surface
reconstruction. These algorithms however originate from early
applications in CAGD, where discrete, low-dimensional data
has to be processed, and are hard to adapt to continuous or
high-dimensional data.

Other strategies divide the point cloud into several subsets
first. Yan [13] for example introduces the fuzzy curve-tracing
algorithm, an approach based on fuzzy-c-means that partitions
the data first and constructs a relational graph based on the
cluster neighborhoods. Lin et al. [14] propose the sequence
joining method, a clustering algorithm to detect rectangular
clusters. The sequence is enveloped by an interval B-spline
curve; its centric curve is taken as the reconstructed curve. Both
approaches struggle however with self-intersecting curves.

Some algorithms construct a graph representation of the data.
Sun et al. [15] apply a Delaunay triangulation and weight the
resulting graph with a Gaussian potential function. Given a
start and end node, an ordering of the data is then determined
by the shortest path computed by the A* algorithm. Bo et
al. [16] delete edges in the triangulated data, whose length is
larger than a threshold to receive several connected components,
which are separately thinned and fitted. The drawback of these
algorithms is the inefficiency of Delaunay triangulation in data
sets with more than three dimensions.

Another family of approximation algorithms analyze the local
tangential flow of the data. Liu et al. [17] place a short smooth
curve onto the point cloud and let it grow at both ends by
iteratively analyzing the principal components in each segment.
This approach is able to deal with self-intersections, sharp
corners, and high dimensions, but struggles with point clouds
of varying thickness. Motivated by vectorizing raster image data
to make it applicable to image processing techniques, Furferi et
al. [18] use the PCA to construct an ordered set of points. The
polynomial chain, built by this set, orders the point cloud. Ruiz
et al. [19] tackle the problem of (near-parallel) self-intersections.
In their work, the currently processed region can be extended to
an ellipse that has its major axis in the direction of the tangent
vector detected one iteration step before. Strategies based on the
local tangential flow are fast and applicable to point clouds of
high dimensions, but often struggle when confronted with self-
intersections and sharp corners, although recent publications
deal with those cases. In addition, the commonly used PCA
is sensitive to the density of the point cloud. If only few data
points are available in an iteration, the first principal component
may not represent the true local direction.

III. FITTING CURVES WITH EVOLUTIONARY ALGORITHMS

The main idea of this work is to use the flexibility of
evolutionary algorithms for the task of curve fitting. While most
other approaches fail at certain properties of the data, a genetic
algorithm may still find a good solution in those cases. To
investigate this statement, an exemplary implementation based
on NSGA-II [20] is presented and evaluated in the following.

A. Constraints

To make the challenge of curve fitting with genetic algo-
rithms feasible in a first study, several restrictions of the curves’
structure and the optimization problem have been defined
beforehand.

First, the curves developed in the algorithm are fixed to be
cubic, i.e. of degree 3. This guarantees a parametric continuity
of C2, which leads to a visible smoothness at each location on
the curve [21]. This is in most cases desired, except for very
sharp corners in the cloud, where a non-continuous curve may
fit the data better. In addition, a cubic degree does not weaken
the local control property of B-spline curves much; changing
a control point will only influence the curve in an interval of
four knots.

Second, the optimization of a curve to a given point cloud
consists of two parts: finding an ideal set of control points and
finding an ideal knot vector. In this work, the second step -
optimizing the knot vector given a set of control points - is
omitted; instead, the knot vector is defined as being clamped
uniform, and automatically computed.

Lastly, the output of the proposed algorithm is not a single
candidate, but the first non-dominated Pareto front, i.e. a set of
solutions. Selecting one individual out of this set as the final
result remains a task of future research. In the evaluation, this
has been done manually.



Fig. 1. Distance computation. Several points are sampled uniformly on the
curve. The distance of a data point P to the curve is approximated by the
distance to the closest sample point (red line).

B. Objectives

The goal of curve fitting is to find a B-spline curve that
represents the point cloud as good as possible, i.e. minimizes
the distance from curve to data. Determining the distance from
a point to the curve however is not trivial and usually done by
a Newton iteration [22]. In this work, a sufficient large number
of points is sampled uniformly on the curve; the minimum
distance from a point to the curve is set as the distance to
the closest sample (Figure 1). For a single individual in one
generation, this yields a complexity of O(m ·n) for m samples
and n data points in the set.

An algorithm only minimizing the distance may tend to
interpolate the data instead of approximating it. If the data
contains noise, interpolation is not desirable, as it causes
overfitting. For curve approximation, an algorithm might
neglect the distance minimization in favor of preserving
simplicity. Here, the objective can therefore be extended by
the desire of keeping the curve as simple as possible. Several
properties of a curve can be used to detect this characteristic,
including the number of control points, the curve length, near-
parallel segments, or segments outside the point cloud. In this
work, the number of control points is analyzed. In a later
test, the curve length has been incorporated as a third fitness
criterion. The computation of both criteria is less complex than
the distance approximation and therefore do not increase the
overall computational costs.

All criteria are independent from each other, which is why
they can be treated as fitness functions in a multiobjective
optimization scenario. The algorithm of choice in this work is
non-dominated sorting genetic algorithm II (NSGA-II) [20].

C. Implementation Details

As described in the constraints, subject of optimization is
the set of control points, where the optimal number of points is
not known beforehand. The obvious encoding for this setting is
a vector, in which each record stores the location of a control
point. Since the number of control points is not fixed, the
length of the chromosome is variable, albeit it has a lower
boundary. Due to the cubic degree of the curves, at least four
control points are needed to construct a curve. The search space
induced by this encoding is closed, with one exception: crossing
two individuals or mutating a chromosome may construct a
chromosome with less than four control points, which is not
allowed. To avoid this edge case, it is treated as a special case
in the implementation.

Fig. 2. One-point crossover. The parents are cut after position 4 and 5. Blue
and red curve segments are influenced by control points of one parent. Purple
curve segments are influenced by control points of both parents.

TABLE I
PARAMETER SETTINGS IN THE EVALUATION

Parameter Value

Number of generations 1000
Population size 100
Crossover probability 0.10
Probability of mutating control point number 0.01
Probability of mutating control point location 0.25

To recombine two individuals, the well-known one-point
crossover is used (Figure 2). As the chromosomes have a
variable length, the cutting position is determined independently
for each parent.

Three mutation operators are implemented in order to modify
a chromosome: First, a control point may be removed from
the vector. Alternatively, a new control point may be added
randomly to the individual. When the number of control points
changes, the knot vector of the curve has to be recomputed.
This affects the shape of the whole curve. Figure 3a shows an
example of this mutation type. Second, the location of a control
point may change. For each dimension, a random factor based
on a zero-mean Gaussian distribution is generated and added to
the current location. The standard deviation should be based on
the size of the data. As the processed data is normalized into the
interval of [0, 1], the standard deviation is fixed to σ = 0.05.
Changing a control point only affects the curve on a local
interval due to the local control (Figure 3b). Lastly, two control
points may be swapped. For two control points Pi and Pj , the
curve is affected in the area of [ti, ti+k)∪[tj , tj+k). An example
is given in Figure 3c. An evaluation of the mutation operations
revealed that swapping control points is not beneficial to the
performance and is not considered for the following section.

IV. EVALUATION

The presented algorithm (in the following denoted by
EA-Fit) has been evaluated on seven different data sets to
analyze its behavior with respect to certain geometric properties.
The algorithms’ parameter settings have been determined
empirically and are shown in Table I. Additionally, it has
been compared to the PCA-based strategy published by Furferi
et al. [18] (in the following denoted by PCA-Fit).

The quality of the approximations is determined with respect
to the objective of curve fitting: the minimization of the distance
from the curve to the point cloud. To compute the distance, the
same method is used as in the evolutionary algorithm. Because



(a) Mutation of control point number. The second control point is
removed.

(b) Mutation of control point location. The second control point is
changed.

(c) Mutation of control point order. The second and third control
point are swapped.

Fig. 3. Mutation operators. The red segments show the curve intervals affected
by the mutation.

TABLE II
SUM OF SQUARED ERROR RESULTS.

Data Set EA-Fit PCA-Fit

Open Point Cloud 0.4314 0.4806
Closed Point Cloud 0.4744 1.3197
Varying Density 0.2500 0.3617
Sharp Corners 0.0577 6.0421
Self-Intersections 0.6195 53.5088
Three-Dimensional Data 0.6819 1.1549
Background Noise 0.8018 2.5212

the result of the implemented genetic algorithm is not a single
solution, but a Pareto front, one has to choose one solution
candidate among the front members as the final curve. Figure 4
shows an example of such a resulting final Pareto front. Due to
the diversity preservation of NSGA-II, most solution candidates
either under- or overfit the data. Nevertheless, those individual
can prove useful during the evolutionary optimization process,
since they cover properties that fit specific objectives best.
Combining other elements with those individuals can be the
key for obtaining even better solutions.

As only two of the eight front members have the desired
shape, it becomes obvious that the selection of the final curve
is critical to the overall algorithm’s performance. In this work,
no automatic decision making system has been implemented;
instead, the final solution is selected manually. The results of
the evaluation are presented in Table II and Figure 5.

A simple open point cloud, such as shown in Figure 5a,
can be properly approximated by both algorithms. This also
applies, if the noise level of the cloud is not uniform, but varies
(Figure 5b). If the point cloud has a closed form, like in a circle,
the correct placement of the end points is most important. In

the tests, EA-Fit does that slightly better (Figure 5c).
A reliable fitting algorithm should be able to handle

geometric characteristics such as self-intersections or sharp
corners. The latter is evaluated in Figure 5d. EA-Fit finds the
correct angles at the turn points by setting multiple control
points at the corners. The PCA-based approach on the other
hand fails to detect the sharp corners and stops, where the
tangents cannot follow the cloud any more. The behavior of the
algorithms at intersecting segments is considered in Figure 5e.
EA-Fit correctly identifies the directions of the data set at the
intersection, and sets the end points of the resulting curve at
proper positions.

Another data set tests the algorithms with regard to their
applicability in high-dimensional spaces, here for the three-
dimensional case. Figure 5f shows the resulting curves. The
simple spring is correctly detected in both curves.

In contrast to the previous data sets, Figure 5g contains data
points that do not belong to the shape that is to be approximated.
As one can see, EA-Fit finds the sinus shape, but generates
a longer curve to approximate some of the outlier data. In a
later study, this data set has been tested again by an extended
version of EA-Fit that considers the curve length as a third
fitness criterion. The result is shown in Figure 5h. The genetic
algorithm almost found the desired shape.

Discussion and Outlook

The evaluation shows that EA-Fit presents an attractive
solution to the problem of curve approximation in unorganized
point clouds. Characteristics such as a varying density, sharp
corners or self-intersections do not limit the algorithm. As the
algorithm cannot detect outliers in a data set, they worsen the
quality of the final result.

It should be pointed out again that the current implementation
does not contain a decision maker; the final selection among
the last Pareto front has to be done manually. A disadvantage
of the proposed strategy is its need to compute the distance
of the curve to all points in the cloud in each generation, and
for each individual . This is computationally expensive, even
with the used sampling strategy and moderately sized data sets
(<1000 points). For larger data sets, a more efficient distance
computation is necessary.

Yet, the results of this study show the potential of evolution-
ary computation for the problem of curve approximation and
justify future research, that may consider many aspects. For one,
the implementation of an automatic decision-making system
can finalize the process of finding a single curve for a given
data set. A popular choice for such a decision maker is choosing
the individual that has the largest marginal hypervolume [23].
This may exclude individuals which rank high in a minority of
objectives and favor well-balanced solutions. Another method
would be to enforce a weight on each objective to calculate
a final fitness value and report the best individual or to use
additional objectives as validation criterions.

Nevertheless, the focus in this work was laid on the general
applicability of evolutionary algorithm to the problem of curve
approximation, not its own optimization. Later work may
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Fig. 4. Exemplary final Pareto front of EA-Fit. Each figure shows one front member.
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(b) Varying Density
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(c) Closed Point Cloud
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Fig. 5. Evaluation results. (a) - (g): resulting curves of EA-Fit and PCA-Fit for different data sets. (h): the curve length has been added as a third objective.

consider an evaluation of different strategies in the algorithm
design, such as the choice of recombination or mutation
operators. Another possible improvement of the algorithm
concerns the reduction of execution time caused by the distance
computation.

One may also discuss other fitness criteria. Objectives like a
short curve length, avoidance of near-parallel curve segments
or detection of curve segments outside the point cloud might
be beneficial to the performance and should be discussed more
intensly in later studies. Adding additional criteria can prove
useful in detecting and modelling a higher variety of shapes,
e.g. detecting closed circles.

In a second evaluation series, the curve length has been

added as a third criterion, which has improved the curve shape
in an environment with background noise. While in the current
implementation all criteria have been weighted equally, it might
be worth to study the influence of each criterion and find better
weights thereby. Of course, the more fitness criteria are added,
the less significant the Pareto front becomes. For a higher
number of objectives, one should therefore consider using a
Many-Objective Genetic Algorithm instead, such as NSGA-III
[24].

The proposed algorithm has been restricted to several
simplifications, which can be addressed as well. On the one
hand, the optimization process is constrained to the control
point vector; the knot vector is computed automatically. While



this is sufficient in most cases, not all point clouds are C2-
continuous at all locations and require a non-uniform curve.
One the other hand, the incorporation of the knot vector into
the optimization might be subject of future research, too.

Follow-up work may also extend the domain of the fitting
algorithm. The current approach only considers one point cloud
per data set, which is fitted by one curve. A more advanced
strategy may detect, if a data set contains more than one
separated point cloud, and fits a curve to each of the clouds.
This idea may as well be used to find a clustering on the data.
Also, the design of the algorithm allows to fit more complex
structures to point clouds. The concept of B-spline curves can
be easily expanded to parametric surfaces or hyperplanes of
any dimensionality.

V. CONCLUSION

In this paper, the applicability of evolutionary algorithms to
the problem of curve fitting of an unordered, noisy point cloud
has been studied. A survey of existing research revealed that
many publications deal with the problem of approximation, but
often struggle with point clouds of high dimensions or specific
geometric characteristics. To overcome these difficulties, a
strategy was presented, which is based on the multiobjective
genetic algorithm NSGA-II. Two properties of fitting curves
were defined as objective functions for the evolutionary
algorithm: the distance to the point cloud as well as the number
of control points to preserve simplicity. An evaluation on
seven data sets substantiates the useful- and robustness of
the algorithm. Critical characteristics, such as non-uniform
noise, sharp corners and self-intersections as well as higher-
dimensional data was fitted properly. The results show potential
for improvements and extensions to other domains.
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